TROUBLESHOOTING CHART:

Problem	Cause	Solution
1. No discharge	a. No water b. Ball valve not open c. Eductor clogged	a. Open water supply b. Open ball valve c. Clean or replace
2. No concentrate draw	a. Clogged foot strainer b. Metering tip or eductor has scale build-up c. Low water pressure d. Discharge tube and/or flooding ring not in place (high flow only) e. Air leak in chemical pick-up tube f. Clear plastic tip installed in inlet pick-up stem	a. Clean or replace b. Clean (descale)* or replace c. Minimum 25 PSI (with water running) required to operate unit properly d. Push tube firmly onto eductor discharge hose barb, or replace tube if it doesn't have a flooding ring e. Put clamp on tube or replace tube if brittle f. Replace with colored metering tip
3. Excess concentrate draw	a. Metering tip not in place	a. Press correct tip firmly into barb on pick-up stem
4. Failure of unit to turn off	a. Faulty ball valve	a. Clean* or replace ball valve
5. Excess foaming in discharge	a. Air leak in chemical pick-up tube	a. Put clamp on tube or replace tube if brittle

Cublo

Hydro

MODEL 5843 \& 5844

	THANK YOU FOR YOUR INTEREST IN OUR PRODUCTS Please use this equipment carefully and observe all warnings andcautions. \qquad protective clothing and eyewear when dispensing chemicals or other materials or when working in the vicinity of all chemicals, filling or emptying equipment, or changing metering tips.
WEAR	
ALWAYS	observe safety and handling instructions of the chemical manufacturer. direct discharge away from you or other persons or into approved containers. dispense cleaners and chemicals in accordance with manufacturer's instructions. Exercise CAUTION when maintaining your equipment. reassemble equipment according to instruction procedures. Be sure all components are firmly screwed or latched into position.
KEEP	

Installation and Operation

1. Remove dispensing unit from box
2. The model 5843 dispensing unit is to be used with an F-style bottle. If you are using a round gallon bottle remove the screw from the cap access panel on the side of the dispenser. Firmly grasp cap and access panel remove the screw from the cap access panel on the side of the dispenser. Firmly grasp cap and access panel
with hand and pull toward you. Retain blank round spacer. Move cap to the position farthest away from the discharge tube. Reinstall blank round spacer in position closest to discharge tube. Snap cap access panel into place and secure with fastening screw. See diagram below for detail.
NOTE! CHANGING THE CAP POSITION FOR BOTTLE TYPE IS A ONE TIME ONLY CONVERSION

The model 5844 dispensing unit is to be used with a round gallon bottle, If you are using an F-style bottle remove screw from the cap access panel on the side of the dispenser. Firmly grasp cap and access panel with hand and pull toward you. Retain blank round spacer. Remove tube from cap assembly and trim approximately $11 / 4^{\prime \prime}$. Reinstall tube on barb of cap and reinstall cap assembly in the position closest to the discharge tube. Reinstall blank round spacer in osition clostest to water inlet swivel. Snap cap access panel into place and secure with fastening screw.
NOTE! CHANGING THE CAP POSITION FOR BOTTLE TYPE IS A ONE TIME ONLY CONVERSION.
3. Select metering tip using guide on next page. Install metering tip into barb in center of cap

Cut product inlet tube to desired lentgh for selected bottle, slide weight over end of tube, insert footvalve into end of tube. NOTE: REMEMBERTO CHECK FOOTVALVESTRAINERS PERIODICALLY FOR CLOGGING: CLEANIF
5. NECESSARY

Insert productinlet assembly into bottle and secure dispensing unit to bottle. Use velcro strap to further secure bottle handle to dispensing unit.
of least 3/8" ID to water inlet swivel.
Depress trigger to begin dispensing desired concentrate solution; release trigger to stop flow of solution
To lock trigger in "ON" position depress and hold trigger while sliding red lock button back then release trigger. To release lock push red lock button down and slightly forward to stop flow of solution.
8. To disconnect, turn off water source. Make sure on/off valve is in OFF position. Disconnect water supply hose from unit

Metering Tip Selection: The final concentration of the dispensed solution is related to both the size of the metering tip opening and the viscosity of the liquid being siphoned. For water-thin products, the chart at right can be used as a guideline. If product is noticeably thicker than water, consult the Measurement of Concentration Procedure below to achieve your desired water-to-product ratio. Because dilution can vary with water temperature and pressure, actual dilution achieved can only be ascertained by using the Measurement of Concentration Procedure. The clear, undrilled tip is provided to permit drilling to size not listed should you need a dilution ratio that falls between standard tip sizes.	APPROXIMATE DILUTIONS AT 40 PSI FOR WATER-THIN PRODUCTS (1.0 CP)			
	$\begin{aligned} & \text { Tip } \\ & \text { Color } \end{aligned}$	$\begin{aligned} & \text { Orifice } \\ & \text { Size } \end{aligned}$	Std. Drill Number	Ratio (per Eductor Flow) 3.5 GPM
	No Tip	. 187	(3/16)	10:1
	Grey	. 128	(30)	10.5:1
	Black	. 098	(40)	11:1
NOTE: Refer to parts diagram if unfamiliar with names of system components.	Beige	. 070	(50)	12:1
	Red	. 052	(55)	16:1
Measurement of Concentration: You can determine the dispensed water-to-product ratio for any metering tip size and product viscosity. All that is required is to operate the primed dispenser for a minute or so and note two things: the amount of dispensed solution, and the amount of concentrate used in preparation of the solution dispensed. The water-to-product ratio is then calculated as follows:	White	. 043	(57)	24:1
	Blue	. 040	(60)	32:1
	Tan	. 035	(65)	34:1
	Green	. 028	(70)	53:1
	Orange	. 025	(72)	64:1
	Brown	. 023	(74)	74:1
$\begin{aligned} & \text { Dilution Ratio }(X: 1) \text { where } X=\text { Amount of Mixed } \\ & \text { Solution - Amount of Concentrate Drawn } \end{aligned}$	Yellow	. 020	(76)	100:1
	Aqua	. 018	(77)	128:1
Amount of Concentrate Drawn	Purple	. 014	(79)	200:1
	Pink	. 010	(87)	400:1

Dilution Ratio, then, equals X parts water to one part concentrate ($X: 1$. $)$.
If the test does not yield the desired ratio, choose a different tip and
repeat the test. Alternative methods to this test are 1) pH (using litmus paper) and 2) titration. Contact your concentrate supplier for further information on these alternative methods and the materials required to perform them.

